
Towards Local-First Distributed Property Graphs
Ayush Pandey

Sorbonne Université (LIP6)
France

ayush.pandey@lip6.fr

Stefania Dumbrava
ENSIIE & Télécom SudParis

France
stefania.dumbrava@ensiie.fr

Marc Shapiro
Sorbonne Université (LIP6) & Inria

France
marc.shapiro@acm.org

Carla Ferreira
NOVA University Lisbon

Portugal
carla.ferreira@fct.unl.pt

Mário Pereira
NOVA University Lisbon

Portugal
mjp.pereira@fct.unl.pt

Nuno Preguiça
NOVA University Lisbon

Portugal
nuno.preguica@fct.unl.pt

Abstract
A graph database system (GDBMS) is designed to efficiently
manage highly interconnected and diverse data. Compared
to a traditional database system, a GDBMS has more strin-
gent requirements due to long running transactions which
also have a large footprint as they access a large number
of vertices, as well as specific constraints and invariants re-
lated to graphs, such as key and connectivity constraints.
Hence, existing sharding and georeplication techniques for
scalability and availability are not well-suited for GDBMSes.
Strong isolation levels suffer from a high probability of spu-
rious conflict and unavailability, while techniques for highly
available isolation, such as Replicated Data Types (RDTs),
are well studied for traditional key-value stores but largely
unexplored for GDBMSes. We analyze the interplay between
availability, consistency, and constraints and propose study-
ing RDTs and consistency levels tailored for GDBMSes.

CCS Concepts: • Information systems → Parallel and
distributed DBMSs; Graph-based database models.

Keywords: local-first, graph databases, consistency

ACM Reference Format:
Ayush Pandey, Stefania Dumbrava, Marc Shapiro, Carla Ferreira,
Mário Pereira, and Nuno Preguiça. 2025. Towards Local-First Dis-
tributed Property Graphs. In 12th Workshop on Principles and Prac-
tice of Consistency for Distributed Data (PaPoC ’25), March 31, 2025,
Rotterdam, Netherlands. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3721473.3722139

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PaPoC ’25, March 30-April 3 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1558-7/2025/03
https://doi.org/10.1145/3721473.3722139

1 Introduction
Graphs have emerged as a cornerstone for managing and
querying complex, interconnected datasets across domains
such as social networks, knowledge graphs, and recommen-
dation systems. During the pandemic, initiatives like EU
Datathon [41], COVID-19 Biomedical Knowledge Miner [13],
CovidGraph [16], collaboratively curated graph datasets that
integrate multi-omics data from all over the world for ge-
nomic analyses and contact tracing. Graph data is also col-
laboratively produced in other critical areas, as finance [38],
telecommunications [21], journalism [20], transportation [29],
challenging traditional RDBMSes. Often, it holds sensitive
information and requires retaining ownership and control.
Local-first systems [22] prioritize local autonomy, per-

formance, and usability in environments where network
connectivity is unreliable or inconsistent. However, despite
their potential, local-first graph databases remain under-
explored in academic research and industry practice. This
paper unites the concept of local-first computing, a paradigm
that prioritizes offline-first capabilities with graph models
characterized by connected data. Local-first graph systems
aim to address the critical trade-offs between consistency,
performance, and usability by enabling users to work locally
and synchronize seamlessly across peers. We present a vi-
sion for how such systems can transform applications in
fields ranging from collaborative knowledge management to
edge computing in smart cities. We also outline the technical
challenges and research directions necessary to realize this.

Scalable and efficient processing of large graphs while also
providing desirable properties, such as availability under net-
work partition, fast response time, and consistency, is chal-
lenging [35]. The CAP theorem shows that a system prone to
partitions cannot guarantee strong consistency and availabil-
ity [14] at the same time. Similarly, a high network latency
implies either a slow response (under strong consistency)
or weaker guarantees (under availability). This trade-off is
inherent: a geo-distributed application that requires strong
consistency (e.g., in security-sensitive areas) must accept the
resulting slow response time; one that requires availability
and fast response (e.g., in a local-first setting [22]) must make
do with less stringent consistency guarantees.

https://doi.org/10.1145/3721473.3722139
https://doi.org/10.1145/3721473.3722139
https://doi.org/10.1145/3721473.3722139
https://op.europa.eu/en/web/eudatathon/covid-19-linked-data
https://op.europa.eu/en/web/eudatathon/covid-19-linked-data
https://bikmi.covid19-knowledgespace.de/
https://healthecco.org/

PaPoC ’25, March 30-April 3 2025, Rotterdam, Netherlands Pandey et. al.

2 Background
Collaboratively curated graphs are widely used in various
fields such as healthcare [30, 40], scientific repositories [18],
enterprise data management [34], financial fraud informa-
tion [12], and trend/pattern analysis [31]. These are typically
large; for instance, the COVID-19 Knowledge Graph has
more than 36M vertices and 60M edges and can be sensitive,
e.g., containing personal medical data, requiring data owner-
ship for privacy. At a foundational level, the most expressive
graph data model is the label property graph model [2] (PG),
i.e., a multi-labeled directedmulti-graphwith key-value prop-
erties on nodes and edges.

We illustrate the principles of a local-first architecture in a
use case modeled on the FMKe benchmark [39] based on an
actual application: the Danish National Joint Medicine Card.
FMKe involves handling healthcare data, including sensitive
information such as patient social security numbers (SSN),
the information of their designated family doctor, prescrip-
tions, and treatments they undergo. This type of information
requires special care to ensure security and privacy.

In edge environments, healthcare institutions can deploy
such applications on edge nodes, enabling local transac-
tion processing. Operations such as delivering prescriptions,
scheduling appointments, andmanaging lab reports are often
performed on-premises and then broadcast to other replicas.
Often, some operations need to be completed even when
network partitions occur. For example, urgent healthcare
cannot be denied when remote nodes are unreachable. In
such scenarios, the operations performed are synchronized
with remote replicas after the fact to ensure that the global
application constraints are not violated.

3 PGs for Local-First Systems
While local-first systems offer significant benefits in terms
of responsiveness and offline functionality, they introduce
several unique challenges when applied to graph databases.
A key difficulty is the inherently interconnected nature of
graph data, where relationships between vertices are as
meaningful as the vertices themselves. This complexity com-
plicates the synchronization and conflict resolution pro-
cesses, particularly when multiple replicas make concurrent
updates in a distributed environment. Ensuring eventual con-
sistency across highly interconnected graphs while retaining
performance remains a significant technical challenge.

Graph databases are evolving beyond schema-less designs,
with more advanced applications increasingly requiring ex-
plicit schemas and constraints to ensure data integrity, vali-
date relationships, and maintain the correct structure of the
graph. In centralized systems, schemas and constraints can
be easily enforced globally. However, in local-first environ-
ments, where updates happen independently, and synchro-
nizations occur asynchronously, ensuring that all vertices
adhere to the same schema and constraints becomes complex.

Conflicting updates may violate integrity constraints, requir-
ing sophisticated mechanisms to reconcile these conflicts
without undermining the structure or validity of a graph.

Expressing and enforcing schemas and constraints is par-
ticularly important for applications with strict data gover-
nance, such as financial services, healthcare, and enterprise
systems. In these domains, maintaining data integrity is non-
negotiable, and violations of schema or business rules can
have significant repercussions. In local-first systems, this ne-
cessitates the development of new techniques for enforcing
schema and constraint consistency during synchronization
while still allowing local nodes to operate autonomously.
Without such mechanisms, local-first graph databases risk
introducing inconsistencies that could degrade the reliability
and trustworthiness of the data over time.
To our knowledge, local-first property graphs are an un-

explored area. Two challenges need to be addressed: graph-
invariant specification and graph-structure synchronization.

Graph Invariant Specification. The recent PG-Schema
language allows one to express typing (PG-Types), constraints
for keys (PG-Key), and cardinality restrictions on portions
of the graph. We illustrate a simplified PG-Schema for the
property graph database instances in Figure 1.

CREATE GRAPH TYPE healthcareGraphType STRICT {

(doctorType : Doctor {name STRING, OPTIONAL kind STRING}),

(patientType : Patient {SSN INT32}),

(labType : Lab {kind STRING}),

(dptType : Department {size ("small"|"medium"|"large")}),

(:doctorType)-[:works {yr:DATE}]->(:dptType),

(:doctorType)-[:manages]->(:dptType),

(:doctorType)-[:refers]->(:doctorType),

(:doctorType)-[:endorses]->(:labType),

(:patientType)-[:visits]->(:doctorType|labType)

FOR (p:Patient) EXCLUSIVE MANDATORY SINGLETON p.SSN, ...}

Constraints.With graphs replicated in multiple nodes, sev-
eral violations can occur due to disconnected local operations
on the data. We discuss the anomalies caused by key and
cardinality constraint violations.

1. EXCLUSIVE constraints two objects in the key scope from
sharing a key value. Consider the constraint: if a department
has a manager of type doctor, it is unique.
FOR (d:Department) EXCLUSIVE e

WITHIN (e:Doctor)-[:manages]->(d)

If replicas R1 and R2 add doctor 𝑑1 as manager of 𝑑𝑒𝑝0;
without a defined strategy, the merged state violates this
constraint, given that two edges have the :manages label.

2. MANDATORY constraints enforce that every object must
have a key, imposing a total reference scheme, i.e., every graph
object should be referred to by at least one key. Consider the
following constraint: a doctor works in a department when a
:works edge exists between the department and doctor vertices.

Towards Local-First Distributed Property Graphs PaPoC ’25, March 30-April 3 2025, Rotterdam, Netherlands

𝑑1 : Doctor
id: akira

𝑑𝑒𝑝0 : Department
size:medium

:w
or
ks

yr
:2
01
9

𝑑2 : Doctor
id: hkuro

:w
or
ks

yr
:2
02
0

:m
an
ag
es

𝑑1 : Doctor
id: akira

𝑑𝑒𝑝0 : Department
size:medium

:w
or
ks

yr
:2
01
9

𝑑2 : Doctor
id: hkuro

:w
or
ks

yr
:2
02
0

:m
an
ag
es

𝑑1 : Doctor
id: akira

𝑑𝑒𝑝0 : Department
size:medium

:w
or
ks

yr
:2
01
9

𝑑2 : Doctor
id: hkuro

:w
or
ks

yr
:2
02
0

:m
an
ag
es

:m
an
ag
es

(a) State of replica R1 (left), replica R2 (center), and merged state with SINGLETON constraint violated (right)

𝑑1 : Doctor
kind: GP

𝑑2 : Doctor
kind: derma.

𝑝1 : Patient
SSN: 278649

𝑙1 : Lab
kind: derma.

:refers

:visits
:visits

𝑑1 : Doctor
kind: GP

𝑑2 : Doctor
kind: derma.

𝑝1 : Patient
SSN: 278649

𝑙1 : Lab
kind: derma.

:refers

:visits :endorses
:visits

𝑑1 : Doctor
kind: GP

𝑑2 : Doctor
kind: derma.

𝑝1 : Patient
SSN: 278649

𝑙1 : Lab
kind: derma.

:refers

:visits
:visits

(b) State of replica R1 (left), replica R2 (center), and merged state with path pattern violation (right)

𝑑𝑒𝑝1 : Department
size: large

𝑑0 : Doctor
id: ana
kind: derma.

𝑑𝑒𝑝0 : Department
size:medium

:w
or
ks

yr
:2
01
9

𝑑𝑒𝑝1 : Department
size:medium

𝑑0 : Doctor
id: ana
kind: derma.

𝑑𝑒𝑝0 : Department
size: large

:w
or
ks

yr
:2
01
9

:w
or
ks

yr
:2
01
9

𝑑𝑒𝑝1 : Department
size: large

𝑑0 : Doctor
id: ana
kind: derma.

𝑑𝑒𝑝0 : Department
size:medium
𝑑𝑒𝑝0 : Department

size: large

:w
or
ks

yr
:2
01
9

(c) State of replica R1 (left), replica R2 (center), and merged state with cardinality constraint violation (right)

Figure 1. A property graph RDT with concurrent updates: edge insertions (green), node deletion (red), conflicts (orange)

FOR (doc:Doctor) MANDATORY e

WITHIN (doc)-[:works]->(d:Department)

If a department 𝑑𝑒𝑝1 is deleted on replica R1, while an edge
is concurrently added to 𝑑𝑒𝑝1 in R2. The merged state may
contain a dangling edge leading to a MANDATORY violation.

3. SINGLETON constraints enforce that every graph can have
at most one key within a scope. Ensuring that if two objects
have the same key, then they are identical. Consider the
constraint: a department has a unique department head.
FOR (d:Department) SINGLETON m

WITHIN (:Doctor)-[m:manages]->(d)

This translates to a node of type Department having a unique
:manages edge from a node of type Doctor. In Figure 1a, a doc-
tor is assigned as the department head. Replicas R1 and R2
concurrently assign different doctors as heads and are locally
correct. However, the constraint is violated when merging
remote updates without conflict resolution.

4. IDENTIFIER constraints combine EXCLUSIVE, MANDATORY
and SINGLETON. Consider the corresponding PG-Key path
constraint: a patient’s visit to a lab is valid only if the lab is
endorsed by a doctor of the same specialty. The visit edge e
is defined in the scope of the key constraint (first WITHIN

clause), and the endorses edge is specified in the descriptor
part (second WITHIN clause), as part of a path.
FOR e WITHIN (:Person)-[e:visits]->(lb:Lab)

IDENTIFIER p, e WITHIN

(d:Doctor)-[p:endorses]->(lb:Lab)<-[e:visits]-(:Person)

WHERE d.kind = lb.kind

In Figure 1b, R1 adds an edge denoting a visit by the pa-
tient to the lab 𝑙1. This update is broadcast and observed by
all replicas. Currently, the doctor endorses lab 𝑙1 in replica R2,
but a missing update causes a violation of the path pattern
in the merged state.

5. Cardinality constraints enforce bounds on property val-
ues based on the graph topology. Consider the department
size constraint that a department with the property size :large
has at least 10 :works edges from doctors, enforced in Figure 1c.
Replica R1 updates the value of the property size of depart-
ment 𝑑𝑒𝑝1 to ’large’, based on the number of doctors, while
Replica R2 moves a doctor from𝑑𝑒𝑝1 to𝑑𝑒𝑝0 and changes the
value of the property size of 𝑑𝑒𝑝0 to ’large’. Locally, replicas
observe correct states and do not violate the constraint; upon
merging, 𝑑𝑒𝑝1 is still a ’large’ department, even though a
doctor has been removed from it.

Graph Structure Synchronization. In a local-first local
graph database, maintaining consistency across all nodes is
essential for preserving data integrity. When multiple nodes

PaPoC ’25, March 30-April 3 2025, Rotterdam, Netherlands Pandey et. al.

are involved, synchronization protocols ensure that updates
are propagated correctly and conflicts from concurrent mod-
ifications are resolved. Given the complex interconnections
between vertices and edges, these protocols are especially
critical for graph data. Unlike linear data models, where
updates to individual records are straightforward, graph
structures require careful handling due to their intricate re-
lationships. For example, conflicting updates can occur if
different users make simultaneous changes to various parts
of a graph. These conflicts are not always easy to resolve,
as path modifications may lead to inconsistent graph states,
such as creating duplicate or missing edges. Ensuring these
changes do not violate the graph’s integrity demands careful
coordination. Moreover, certain operations, such as updating
multiple edges or vertices together, must be made atomically
visible to maintain consistency. This becomes particularly
challenging in local-first systems, where decentralized ar-
chitecture complicates the implementation of distributed
transactions and makes it challenging to ensure that all up-
dates are applied consistently across nodes.
In local-first systems, achieving atomicity with partial

replication is problematic since updates may be incomplete
or only partially applied. Furthermore, large graphs present
additional hurdles with their dense network of intercon-
nected elements. Efficient communication protocols are nec-
essary to synchronize the graph across multiple nodes while
minimizing data transfer. The challenge is propagating only
the portions of the graph that have changed, avoiding trans-
mitting redundant information. At the same time, the system
must preserve the integrity of the graph, ensuring that no
part of it is left in an inconsistent or invalid state.

4 Local-First Connectivity for PGs
Local-first systems are built with an offline-first approach,
where data is stored locally on the user’s device and synchro-
nized with other devices when connectivity is available. This
approach offers several advantages: improved responsive-
ness, offline access, and reduced network dependency. To
achieve this, a system needs a few key features. First, it must
support local data storage and processing, enabling users to
interact with the application even when offline. This allows
users to perform operations like querying, modifying ver-
tices and edges, or adding new properties without requiring
immediate synchronization with a remote database. Tech-
nologies such as SQLite, IndexedDB, or other local databases
offer local storage and querying solutions, but cannot han-
dle graph data without an expensive translation layer. This
makes existing client-side RDBMSes or NoSQL databases
unsuitable for local-first graph databases.

Synchronization is a critical feature of local-first systems.
After a period of disconnection, a client device must prop-
agate local changes to a central server or peers and merge
updates from others tomaintain data consistency. This can be

achieved through various synchronizationmechanisms, such
as operational transform, state-based synchronization, or
delta-based synchronization. These methods track changes
in the graph’s structure and properties, ensuring these up-
dates are merged after reconnecting.
In an ideal distributed system, concurrent operations on

a shared graph would never conflict. However, achieving
this in practice is fundamentally constrained: it requires a
central authority to enforce a global order of operations
or restrictions on the types of permissible graph modifica-
tions. Centralized coordination undermines the scalability
and fault tolerance benefits of distributed systems, while
overly restrictive operation rules limit the graph’s utility.
Consequently, in decentralized environments, conflicts are
unavoidable. Consider a scenario where two users, Alice and
Bob, work on copies of the same graph. Alice operates in a
remote, intermittently connected edge environment, while
Bob interacts with an on-premise instance. Suppose Alice
adds an edge between vertices V1 and V2, while Bob, un-
aware of Alice’s pending update, deletes V1 entirely. When
Alice reconnects, the system must reconcile these conflicting
actions to ensure both users converge on a consistent graph
state. Without a deterministic resolution policy, divergent
outcomes could emerge, violating consistency guarantees.

To address this, conflict resolution strategies must priori-
tize clarity and predictability. In addition, when considering
property graphs, one could imagine defining such conflict
resolution policies at different levels of granularity, e.g., at
the level of nodes, edges, or the properties thereof, leading
to the need to study their interplay. An example of such
a policy is the Last-Writer-Wins (LWW) approach, which
relies on timestamps to prioritize the most recent update.
While LWW simplifies ordering in systems with loosely syn-
chronized clocks, it risks data loss in concurrent scenarios.

Alternative strategies, such as Add-Wins or Remove-Wins,
prioritize operation semantics over timestamps. In Remove-
Wins, Bob’s deletion of V1 would invalidate Alice’s edge
addition, as the vertex no longer exists. Conversely, Add-
Wins might preserve Alice’s edge by marking the deleted
vertex with a tombstone and allowing the edge to persist in
a degraded state. However, neither approach is universally
optimal. Remove-Wins risks undoing valid work, while Add-
Wins could leave the graph in an inconsistent state (e.g.,
edges referencing nonexistent vertices).
Advanced systems may employ operational transforma-

tion (OT) or Conflict-Free Replicated Data Types (CRDTs) to
enable semantically rich merges. For example, a CRDT-based
graph could track dependencies usingmetadata that captures
the causality of operations. If Alice’s edge addition is causally
independent of Bob’s deletion, the system might flag the con-
flict for manual resolution or apply domain-specific heuris-
tics (e.g., preserving the edge only if both vertices still exist
post-merge). Such strategies demand greater complexity but
align outcomes with user intent. Ultimately, the choice of

Towards Local-First Distributed Property Graphs PaPoC ’25, March 30-April 3 2025, Rotterdam, Netherlands

Local
Partial order

Global
Partial Order

Local
Total OrderNo Order

Global
Total Order

Ordering Guarantees
O

LT
P

 W
or

kl
oa

d

B
I

W
or

kl
oa

d O
LA

P
W

or
kl

oa
d

SI, SSERTCCEC

SINGLETON

Edge Reads

Vertex Writes

Vertex Reads

Edge Writes

Path Traversals

Path Patterns

Global

Local

Global

Distributed

Local

Local

Distributed

Local

Global
EXCLUSIVE

MANDATORY

Local

Global

Local
Cardinality

Global

PG
-K

ey
C

on
st

ra
in

ts

Graph Analytics

Schema
Local

EC: Eventual Consistency, TCC: Transactional Causal Consistency,
SI: Snapshot Isolation, SSER: Strict Serializability

Figure 2. Graph database operation and constraint scopes
vs. the weakest consistency level required to enforce them.

policy depends on the system’s consistency requirements,
tolerance for data loss, and the graph’s role in broader work-
flows. A hybrid approach, as prescribed by [36], involves
combining automated resolution for common cases with
escalation mechanisms for ambiguities to strike a balance
between usability and correctness.

5 Research Directions
Given that local-first systems are designed to operate in dis-
connected or intermittently connected environments—and
the challenges thereof—we outline key research directions.

Research Challenge 1: Finding the right consistency level
to support graph database requirements.

Local-first connectivity indicates an environment with
high availability with the possibility of disconnections. In
such environments, choosing an appropriate consistency
level is crucial to ensure that the graph database can op-
erate effectively. One way to guarantee correctness is to
utilize methods to systematically detect anomalies, which
are based heavily on an exhaustive correctness analysis of
applications [9]. Approaches such as CISE [15], CALM [1], or
Hamsaz [19] propose a static analysis. These approaches are
not readily available to ordinary programmers. Alongside,
such analyses cannot be performed when the queries are
not defined a priori. The LDBC SNB and BI workloads show
examples of queries for which the execution plan changes
as the underlying graph data evolves. In lieu of theoretically
verified correctness, database developers rely on well-known
consistency models. Most consistency levels can be charac-
terized by the ordering guarantees of operations. We list

popular consistency levels and how they affect graph op-
erations and invariants, based on the work of Bailis et al.
[4]. The two extremes of consistency are eventual consis-
tency (EC) and strict serializability (SSER). EC assumes no
operation ordering and is hence insufficient for GDBMSes.

SSER totally orders all operations across all geo-distributed
replicas and prevents anomalies, ensuring that every replica
executes operations in the same order and does not miss
remote updates. A system that guarantees total visibility of
operations between replicas foregoes availability [8]. For
local-first graph databases, this is too big a sacrifice. Some
invariants, such as global cardinality, are too strong to be
maintained without sacrificing availability. For example, "the
number of edges between two vertices should be less than 3" is
especially difficult to maintain with concurrent operations
without all replicas agreeing on a global execution order.

Without a global total order, consistency of schema updates
and cardinality constraint preservation is not guaranteed.
Transactional causal consistency (TCC) eliminates some

anomalies by ordering causally related operations but allows
replicas to disagree on the order of concurrent operations,
achieving a global partial operation order [24]. This makes
TCC the strongest level of consistency that is always avail-
able [3]. It should, by definition, allow an application to
maintain PG-key constraints in a local-first application as
presented in Figure 2. Concurrent operations that cannot
be ordered are resolved by assigning them priority, e.g., be-
tween addEdge and deleteNode, one could give priority to
addEdge, ignoring a concurrent deleteNode operation.

However, after two replicas of a graph have diverged sig-
nificantly, merging operations from the two to reach a consis-
tent state requires solving graph isomorphismwhich remains
quasi-polynomial at best [17]. For graphs with millions of
vertices and edges, this can become very expensive very
quickly. Alternatively, one could maintain parallel snapshots
with multiple temporal versions of vertices and edges in the
same graph instance. This further increases the already high
cost of distributed pattern matching queries [7].

There is a need to comprehensively study the consistency
levels that facilitate common graph operations in a local-
first setting. A solution might involve dynamically switching
consistency models such that strong constraints like schema
and cardinality operate under strong consistency models
while trivial operations like vertex updates and reads can
occur under weaker consistency levels.

Research Challenge 2: Designing graph databases that can
operate in a disconnected environment.

Most commercial GDBMSs are designed to operate in a
connected environment. Both native graph databases, like
Neo4j, and non-native ones, like CosmosDB, rely on a cen-
tral server for coordination, making them unfit for local-first
connectivity. As shown in Table 1, native graph databases are

PaPoC ’25, March 30-April 3 2025, Rotterdam, Netherlands Pandey et. al.

mainly fully replicated and sacrifice availability for consis-
tency, adopting a leader-follower approach. AllegroGraph al-
lows multi-leader reads/writes and improves availability, but
does not guarantee consistency. Non-native graph databases,
such as JanusGraph, use an external storage layer, e.g., HBase,
Cassandra, ScyllaDB, for availability and consistency [26].
Others, e.g., CosmosDB, DB2 Graph, and Oracle Graph, rely
on the guarantees of their underlying relational database.

In a local-first environment, operations performed on the
client side are typically agnostic to the server-side capabili-
ties. With the bulk of computation being local and remote
collaboration being an afterthought, at the implementation
level, more robust and varied synchronization methods are
needed. For example, clients working in close vicinity should
be able to synchronize via a local communication channel,
even if their states cannot be synchronized with remote
clients. This precludes the assumption that a globally consis-
tent state can always be achieved via some form of synchro-
nization that guarantees a total order of operations. There
is a need to study how to support peer-to-peer synchroniza-
tion between replicas of PG-RDTs-based graph databases,
allowing collaboration among clients without resorting to
central infrastructure. For example, two clients on a stable,
fast, local network should be able to synchronize their states
without connecting to the data-center in the cloud.

Database Txn Model Consistency Scalability

Native Graph Databases

Neo4J ACID TCC FR, LF
TigerGraph ACID SSER FR, Consensus
AllegroGraph ACID None FR, Multi-leader
OrientDB ACID SI FR, Quorum

Non-native Graph Databases

JanusGraph Non ACID None Partitioned
ArangoDB Non ACID TCC Partitioned, FR, LF
CosmosDB ACID EC - SSER Partitioned, FR, LF
DB2 Graph ACID EC - SSER Provided by DB2
Oracle Graph ACID EC - SSER Provided by Oracle DB
EC: Eventual Consistency, SI: Snapshot Isolation, TCC: Transactional Causal

Consistency, SSER: Strict Serializability, FR: Fully Replicated, LF: Leader-Follower

Table 1. Popular graph database feature support

For GDBMSes, there is a need for custom solutions to
unify the expressiveness of the property graph model with
the guaranteed conflict resolution of RDTs. We call such
replicated data types PG-RDTs. Existing RDTs can support
the building blocks of property graphs, i.e., strings for labels,
maps for properties, and sets for vertices and edges. RDTs
such as Sequences [28], Replicated Growable Arrays [33],
and Treedoc [32] provide modifiable string types that can
be used as labels. Also, Map RDTs can define properties, and
Set RDTs can store vertices and edges. The challenge lies
in unifying these replicated data types into a usable data
structure which, not only, provides a policy for resolving
conflicts but also the ability to express constraints without

having to manage them within the application. For example,
reciprocal consistency is a simple constraint which ensures
bidirectional traversability of an edge between vertices that
are on two separate shards [43]. Graph databases listed in
Table 1 rely on underlying RDBMSes for constraints or do
not guarantee constraints at all. To our knowledge, no native
graph database handles even trivial constraints.

Research Challenge 3: Ensuring that a PG-RDT framework
preserves constraints and invariants.

Wang et al. [42] propose replication-aware linearizability
as a criterion to verify the correctness of RDT. The authors
manually encode RDTs in Boogie [5] to obtain automatic cor-
rectness proofs for various implementations. However, they
do not consider graph-based structures. Recently, Soundara-
pandian et al. [37] proposed to build and verify MRDTs using
F* and SMT solvers. The proof rule parameterized by weakly
consistent models [27] is proposed to automatically check
RDT convergence. Nagar and Jagannathan [27] designs a
custom verification strategy that takes advantage of first-
order logic specifications and the Z3 solver [11]. While basic
graph RDTs (2P2P-Graph and Graph-with-ORSet) are sup-
ported, correct RDT implementations may be rejected due to
imprecise specifications. The work by Waudby et al. [44] is
the first attempt to test constraint compliance for anomaly
detection in graph databases. To the best of our knowledge,
there is no off-the-shelf tool that can be directly for reliable,
invariant-preserving property graph replication.

6 Conclusion
Despite growing demands for graph database scalability [6],
comparatively less attention has been paid to decentralized
GDBMSes. Also, while many recent works focus on perfor-
mance [10, 23, 25], guaranteed correctness in this setting is
yet to be investigated. While systems like Oracle Graph or
DB2 Graph leverage existing research on invariant preserva-
tion for traditional RDBMSes, there is a need for principled
solutions to preserve constraints and invariants against the
practical limitations of synchronization brought forth by
decentralization. We argue that proposing such solutions re-
quires carefully analyzing the consistency requirements and
designing novel replicated types to uphold these invariants.

Acknowledgments
This work was supported by the grants ANR-24-CE25-1109
(Dumbrava), PHC Pessoa 2024 50959YJ (Dumbrava and Fer-
reira), UID/04516/NOVA LINCS FCT.IP, EU Horizon Europe
under Grant Agreement no. 101093006 (Ferreira, Pereira, and
Preguiça) and ANR-23-PECL-0004 under the France 2030 pro-
gram (Julien Sopena).

Towards Local-First Distributed Property Graphs PaPoC ’25, March 30-April 3 2025, Rotterdam, Netherlands

References
[1] Peter Alvaro, Neil Conway, Joe Hellerstein, andWilliamMarczak. 2011.

Consistency Analysis in Bloom: a CALM and Collected Approach. In
Biennial Conf. on Innovative DataSystems Research (CIDR). Asilomar,
CA, USA. http://www.cidrdb.org/cidr2011/

[2] Renzo Angles. 2018. The Property Graph Database Model. In AMW
(CEUR Workshop Proceedings, Vol. 2100). CEUR-WS.org.

[3] Hagit Attiya, Faith Ellen, and Adam Morrison. 2017. Limitations
of Highly-Available Eventually-Consistent Data Stores. IEEE Trans.
on Parallel and Dist. Sys. (TPDS) 28, 1 (Jan. 2017), 141–155. https:
//doi.org/10.1109/TPDS.2016.2556669

[4] Peter Bailis, Aaron Davidson, Alan D. Fekete, Ali Ghodsi, Joseph M.
Hellerstein, and Ion Stoica. 2013. Highly Available Transactions:
Virtues and Limitations. Proc. VLDB Endow. 7, 3 (2013), 181–192.
https://doi.org/10.14778/2732232.2732237

[5] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,
and K. Rustan M. Leino. 2005. Boogie: A Modular Reusable Verifier for
Object-Oriented Programs. In FMCO (Lecture Notes in Computer Sci-
ence, Vol. 4111). Springer, 364–387. https://doi.org/10.1007/11804192_
17

[6] Maciej Besta, Robert Gerstenberger, Emanuel Peter, Marc Fischer,
Michal Podstawski, Claude Barthels, Gustavo Alonso, and Torsten
Hoefler. 2024. Demystifying Graph Databases: Analysis and Taxon-
omy of Data Organization, System Designs, and Graph Queries. ACM
Comput. Surv. 56, 2 (2024), 31:1–31:40. https://doi.org/10.1145/3604932

[7] Sarra Bouhenni, Saïd Yahiaoui, Nadia Nouali-Taboudjemat, and Hama-
mache Kheddouci. 2021. A Survey on Distributed Graph Pattern
Matching in Massive Graphs. ACM Comput. Surv. 54, 2, Article 36 (Feb.
2021), 35 pages. https://doi.org/10.1145/3439724

[8] Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A
Framework for Transactional Consistency Models with Atomic Visi-
bility. In Int. Conf. on Concurrency Theory (CONCUR) (Leibniz Int. Proc.
in Informatics (LIPIcs), Vol. 42), Luca Aceto and David de Frutos Escrig
(Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 58–71. https://doi.org/10.4230/LIPIcs.CONCUR.2015.58

[9] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly
detection: A survey. ACM Comput. Surv. 41, 3, Article 15 (jul 2009),
58 pages. https://doi.org/10.1145/1541880.1541882

[10] Marek Ciglan, Alex Averbuch, and Ladislav Hluchý. 2012. Bench-
marking Traversal Operations over Graph Databases. In Workshops
Proceedings of the IEEE 28th International Conference on Data Engi-
neering, ICDE 2012, Arlington, VA, USA, April 1-5, 2012, Anastasios
Kementsietsidis and Marcos Antonio Vaz Salles (Eds.). IEEE Computer
Society, 186–189. https://doi.org/10.1109/ICDEW.2012.47

[11] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An
Efficient SMT Solver. In TACAS (Lecture Notes in Computer Science,
Vol. 4963). Springer, 337–340. https://doi.org/10.1007/978-3-540-78800-
3_24

[12] Emil Eifrem. 2016. Graph databases: the key to foolproof fraud de-
tection? Computer Fraud & Security 2016, 3 (2016), 5–8. https:
//doi.org/10.1016/S1361-3723(16)30024-0

[13] Fraunhofer SCAI. 2020. The Biomedical Knowledge Miner. https:
//bikmi.covid19-knowledgespace.de/

[14] Seth Gilbert and Nancy Lynch. 2002. Brewer’s conjecture and the feasi-
bility of consistent, available, partition-tolerant web services. SIGACT
News 33, 2 (2002), 51–59. https://doi.org/10.1145/564585.564601

[15] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh,
and Marc Shapiro. 2016. ’Cause I’m Strong Enough: Reasoning about
Consistency Choices in Distributed Systems. In Symp. on Principles of
Prog. Lang. (POPL). Assoc. for Computing Machinery, St. Petersburg,
FL, USA, 371–384. https://doi.org/10.1145/2837614.2837625

[16] HealthECCO. 2020. CovidGraph. https://healthecco.org/
[17] Harald Andrés Helfgott, Jitendra Bajpai, and Daniele Dona.

2017. Graph isomorphisms in quasi-polynomial time.

arXiv:1710.04574 [math.GR] https://arxiv.org/abs/1710.04574
[18] Samar El Helou, Shinji Kobayashi, Goshiro Yamamoto, Naoto Kume,

Eiji Kondoh, Shusuke Hiragi, Kazuya Okamoto, Hiroshi Tamura,
and Tomohiro Kuroda. 2019. Graph databases for openEHR clin-
ical repositories. Int. J. Comput. Sci. Eng. 20, 3 (2019), 281–298.
https://doi.org/10.1504/IJCSE.2019.103955

[19] Farzin Houshmand and Mohsen Lesani. 2019. Hamsaz: Replication
Coordination Analysis and Synthesis. In Symp. on Principles of Prog.
Lang. (POPL) (Proc. ACM Program. Lang., Vol. 3). Assoc. for Computing
Machinery, Cascais, Portugal, 74:1–74:32. https://doi.org/10.1145/
3290387

[20] ICIJ. 2022. Panama Papers Case Study. https://guides.neo4j.com/
sandbox/icij-panama-papers/datashape.html.

[21] Neo4j Inc. 2021. Graph Database Use Cases for Financial Services
Companies. https://neo4j.com/use-cases/telecom/

[22] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark
McGranaghan. 2019. Local-First Software: You Own Your Data,
in spite of the Cloud. In Int. Symp. on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward! Assoc. for
Computing Machinery Special Interest Group on Pg. Lang. (SIG-
PLAN), Assoc. for Computing Machinery, Athens, Greece, 154–178.
https://doi.org/10.1145/3359591.3359737

[23] Matteo Lissandrini, Martin Brugnara, and Yannis Velegrakis. 2018.
Beyond Macrobenchmarks: Microbenchmark-based Graph Database
Evaluation. Proc. VLDB Endow. 12, 4 (2018), 390–403. https://doi.org/
10.14778/3297753.3297759

[24] Benoît Martin, Laurent Prosperi, and Marc Shapiro. 2023.
Transactional-Turn Causal Consistency. In Euro. Conf. on Parallel and
Dist. Comp. (Euro-Par) (Lecture Notes in Comp. Sc. (LNCS), Vol. LNCS
14100), José Cano, Marios D. Dikaiakos, George A. Papadopoulos,
Miquel Pericàs, and Rizos Sakellariou (Eds.). Springer-Verlag, Limassol,
Cyprus, 578–591. https://doi.org/10.1007/978-3-031-39698-4_39

[25] Robert Campbell McColl, David Ediger, Jason Poovey, Dan Campbell,
and David A. Bader. 2014. A performance evaluation of open source
graph databases. In Proceedings of the First Workshop on Parallel Pro-
gramming for Analytics Applications (Orlando, Florida, USA) (PPAA
’14). Association for Computing Machinery, New York, NY, USA, 11–18.
https://doi.org/10.1145/2567634.2567638

[26] Jéssica Monteiro, Filipe Sá, and Jorge Bernardino. 2023. Graph
Databases Assessment: JanusGraph, Neo4j, and TigerGraph. In Perspec-
tives and Trends in Education and Technology, Anabela Mesquita, An-
tónio Abreu, João Vidal Carvalho, and Cristina Helena Pinto de Mello
(Eds.). Springer Nature Singapore, Singapore, 655–665.

[27] Kartik Nagar and Suresh Jagannathan. 2019. Automated Parameterized
Verification of CRDTs. In CAV (2) (Lecture Notes in Computer Science,
Vol. 11562). Springer, 459–477. https://doi.org/10.1007/978-3-030-
25543-5_26

[28] Brice Nédelec, Pascal Molli, Achour Mostéfaoui, and Emmanuel
Desmontils. 2013. LSEQ: an adaptive structure for sequences in dis-
tributed collaborative editing. In ACM Symposium on Document Engi-
neering 2013, DocEng ’13, Florence, Italy, September 10-13, 2013, Simone
Marinai and Kim Marriott (Eds.). ACM, 37–46. https://doi.org/10.1145/
2494266.2494278

[29] Inc. Neo4j. 2022. Transport for London Case Study. https://neo4j.com/
case-studies/transport-for-london/.

[30] Yubin Park, Mallikarjun Shankar, Byung-Hoon Park, and Joydeep
Ghosh. 2014. Graph databases for large-scale healthcare systems:
A framework for efficient data management and data services. In
Workshops Proceedings of the 30th International Conference on Data
Engineering Workshops, ICDE 2014, Chicago, IL, USA, March 31 - April 4,
2014. IEEE Computer Society, 12–19. https://doi.org/10.1109/ICDEW.
2014.6818295

[31] Nataliia Pobiedina, Stefan Rümmele, Sebastian Skritek, and Hannes
Werthner. 2014. Benchmarking Database Systems for Graph Pattern

http://www.cidrdb.org/cidr2011/
https://doi.org/10.1109/TPDS.2016.2556669
https://doi.org/10.1109/TPDS.2016.2556669
https://doi.org/10.14778/2732232.2732237
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/11804192_17
https://doi.org/10.1145/3604932
https://doi.org/10.1145/3439724
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/ICDEW.2012.47
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1016/S1361-3723(16)30024-0
https://doi.org/10.1016/S1361-3723(16)30024-0
https://bikmi.covid19-knowledgespace.de/
https://bikmi.covid19-knowledgespace.de/
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/2837614.2837625
https://healthecco.org/
https://arxiv.org/abs/1710.04574
https://arxiv.org/abs/1710.04574
https://doi.org/10.1504/IJCSE.2019.103955
https://doi.org/10.1145/3290387
https://doi.org/10.1145/3290387
https://guides.neo4j.com/sandbox/icij-panama-papers/datashape.html
https://guides.neo4j.com/sandbox/icij-panama-papers/datashape.html
https://neo4j.com/use-cases/telecom/
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.14778/3297753.3297759
https://doi.org/10.14778/3297753.3297759
https://doi.org/10.1007/978-3-031-39698-4_39
https://doi.org/10.1145/2567634.2567638
https://doi.org/10.1007/978-3-030-25543-5_26
https://doi.org/10.1007/978-3-030-25543-5_26
https://doi.org/10.1145/2494266.2494278
https://doi.org/10.1145/2494266.2494278
https://neo4j.com/case-studies/transport-for-london/
https://neo4j.com/case-studies/transport-for-london/
https://doi.org/10.1109/ICDEW.2014.6818295
https://doi.org/10.1109/ICDEW.2014.6818295

PaPoC ’25, March 30-April 3 2025, Rotterdam, Netherlands Pandey et. al.

Matching. In Database and Expert Systems Applications - 25th Inter-
national Conference, DEXA 2014, Munich, Germany, September 1-4,
2014. Proceedings, Part I (Lecture Notes in Computer Science, Vol. 8644),
Hendrik Decker, Lenka Lhotská, Sebastian Link, Marcus Spies, and
Roland R. Wagner (Eds.). Springer, 226–241. https://doi.org/10.1007/
978-3-319-10073-9_18

[32] Nuno Preguiça, Joan Manuel Marquès, Marc Shapiro, and Mihai Leţia.
2009. A commutative replicated data type for cooperative editing.
In Int. Conf. on Distributed Comp. Sys. (ICDCS). Montréal, Canada,
395–403. https://doi.org/10.1109/ICDCS.2009.20

[33] Hyun-Gul Roh, Myeongjae Jeon, Jinsoo Kim, and Joonwon Lee. 2011.
Replicated abstract data types: Building blocks for collaborative ap-
plications. J. Parallel Distributed Comput. 71, 3 (2011), 354–368.
https://doi.org/10.1016/J.JPDC.2010.12.006

[34] Michael Rudolf, Marcus Paradies, Christof Bornhövd, and Wolfgang
Lehner. 2013. The Graph Story of the SAP HANA Database. In Daten-
banksysteme für Business, Technologie und Web (BTW), 15. Fachtagung
des GI-Fachbereichs "Datenbanken und Informationssysteme" (DBIS), 11.-
15.3.2013 in Magdeburg, Germany. Proceedings (LNI, Vol. P-214), Volker
Markl, Gunter Saake, Kai-Uwe Sattler, Gregor Hackenbroich, Bern-
hard Mitschang, Theo Härder, and Veit Köppen (Eds.). GI, 403–420.
https://dl.gi.de/handle/20.500.12116/17334

[35] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled
Ammar, Renzo Angles, Walid G. Aref, Marcelo Arenas, Maciej Besta,
Peter A. Boncz, Khuzaima Daudjee, Emanuele Della Valle, Stefania
Dumbrava, Olaf Hartig, Bernhard Haslhofer, Tim Hegeman, Jan Hid-
ders, Katja Hose, Adriana Iamnitchi, Vasiliki Kalavri, Hugo Kapp,
Wim Martens, M. Tamer Özsu, Eric Peukert, Stefan Plantikow, Mo-
hamed Ragab, Matei Ripeanu, Semih Salihoglu, Christian Schulz, Petra
Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo
Tommasini, Antonino Tumeo, Alexandru Uta, Ana Lucia Varbanescu,
Hsiang-YunWu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2021. The
future is big graphs: a community view on graph processing systems.
Commun. ACM 64, 9 (2021), 62–71.

[36] Marc Shapiro, Annette Bieniusa, Nuno Preguiça, Valter Balegas, and
Christopher Meiklejohn. 2018. Just-Right Consistency: reconciling avail-
ability and safety. Rapport de Recherche 9145. Inria Paris; Sorbonne

Universités; Tech. U. Kaiserslautern; U. Nova de Lisboa; U. Catholique
de Louvain, Paris, France.

[37] Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and K. C.
Sivaramakrishnan. 2022. Certified mergeable replicated data types. In
PLDI. ACM, 332–347. https://doi.org/10.1145/3519939.3523735

[38] Sherry Tiao. 2021. Graph Database Use Cases for Financial Services
Companies. https://blogs.oracle.com/database/post/graph-database-
use-cases-for-financial-services-companies

[39] Gonçalo Tomás, Peter Zeller, Valter Balegas, Deepthi Devaki
Akkoorath, Annette Bieniusa, João Leitão, and Nuno M. Preguiça.
2017. FMKe: a Real-World Benchmark for Key-Value Data Stores. In
Proceedings of the 3rd International Workshop on Principles and Practice
of Consistency for Distributed Data, PaPoC@EuroSys 2017, Belgrade,
Serbia, April 23 - 26, 2017, Annette Bieniusa and Alexey Gotsman (Eds.).
ACM, 7:1–7:4. https://doi.org/10.1145/3064889.3064897

[40] Sultan N. Turhan. 2023. Leveraging Graph Databases for Enhanced
Healthcare Data Management: A Performance Comparison Study. In
IEEE International Conference on Big Data, BigData 2023, Sorrento, Italy,
December 15-18, 2023, Jingrui He, Themis Palpanas, Xiaohua Hu, Al-
fredo Cuzzocrea, Dejing Dou, Dominik Slezak, Wei Wang, Aleksandra
Gruca, Jerry Chun-Wei Lin, and Rakesh Agrawal (Eds.). IEEE, 5007–
5013. https://doi.org/10.1109/BIGDATA59044.2023.10386297

[41] European Union. 2020. COVID-19 data as linked data. https://op.
europa.eu/en/web/eudatathon/covid-19-linked-data

[42] Chao Wang, Constantin Enea, Suha Orhun Mutluergil, and Gustavo
Petri. 2019. Replication-aware linearizability. In PLDI. ACM, 980–993.
https://doi.org/10.1145/3314221.3314617

[43] Jack Waudby, Paul Ezhilchelvan, Jim Webber, and Isi Mitrani. 2020.
Preserving reciprocal consistency in distributed graph databases. In
Proceedings of the 7thWorkshop on Principles and Practice of Consistency
for Distributed Data (Heraklion, Greece) (PaPoC ’20). Association for
Computing Machinery, New York, NY, USA, Article 2, 7 pages. https:
//doi.org/10.1145/3380787.3393675

[44] Jack Waudby, Benjamin A. Steer, Karim Karimov, József Marton, Peter
Boncz, and Gábor Szárnyas. 2021. Towards Testing ACID Compli-
ance in the LDBC Social Network Benchmark. In Performance Evalua-
tion and Benchmarking, Raghunath Nambiar and Meikel Poess (Eds.).
Springer International Publishing, Cham, 1–17.

https://doi.org/10.1007/978-3-319-10073-9_18
https://doi.org/10.1007/978-3-319-10073-9_18
https://doi.org/10.1109/ICDCS.2009.20
https://doi.org/10.1016/J.JPDC.2010.12.006
https://dl.gi.de/handle/20.500.12116/17334
https://doi.org/10.1145/3519939.3523735
https://blogs.oracle.com/database/post/graph-database-use-cases-for-financial-services-companies
https://blogs.oracle.com/database/post/graph-database-use-cases-for-financial-services-companies
https://doi.org/10.1145/3064889.3064897
https://doi.org/10.1109/BIGDATA59044.2023.10386297
https://op.europa.eu/en/web/eudatathon/covid-19-linked-data
https://op.europa.eu/en/web/eudatathon/covid-19-linked-data
https://doi.org/10.1145/3314221.3314617
https://doi.org/10.1145/3380787.3393675
https://doi.org/10.1145/3380787.3393675

	Abstract
	1 Introduction
	2 Background
	3 PGs for Local-First Systems
	4 Local-First Connectivity for PGs
	5 Research Directions
	6 Conclusion
	Acknowledgments
	References

